二十五明史:卷三十六 志第十二
◎历六 大统历法三下(推步) ▲步交食 交周日二十七日二十一刻二二二四。半之为交中日。 交终度三百六十三度七九三四一九六。半之为交中日度。 正交度三百五十七度六四。 中交度一百八十八度零五。 前准一百六十六度三九六八。 后准一十五度五。 交差二日三一八三六九。 交望一十四日七六五二九六五。 日食阳历限六度。定法六十。 日食阴历限八度。定法八十。 月食十三度五分。定法八十七。 阳食限(视定朔入交。) 零日六零已下 一十三日一零已上 在一十四日,不问小余,皆入食限。 一十五日二零已下 二十五日六零已上 在二十六日、二十七日,不问小余,皆入食限。 ▲阴食限(视定望入交。) 一日二零已下 一十二日四零已上 在零日一十三日,不问小余,皆入食限。又视定朔小余在日出前、日入后二十分已上者,日食在夜。定望小余在日入前、日出后八刻二十分已上者,月食在昼。皆不必布算。 推日食用数 经朔 盈缩历 盈缩差 迟疾历 迟疾差 加减差 定朔 入交凡分(以上皆全录之。)定入迟疾历(以加减差,加减迟疾即是。)迟疾定限(置定入迟疾历,以日转限一十二限二十分乘之,小余不用。)定限行度(以定限,取立成内行度,迟用迟,疾用疾,内减日行分八分二十秒,得之。)日出分(以盈缩历,从立成内取之,下同。)日入分半昼分(取立成内昏分,减去五千二百五十分,得之。)岁前冬至时黄道宿次 推交常度 置有食之朔入交凡分,以月平行度乘之,即得。 推交定度 置交常度,以朔下盈缩差盈加缩减之,即得。 推日食正交限度 视交定度在七度已下,三百四十一度已上者,食在正交。在一百七十五度已上,二百零二度已下者,食在中交。不在限内不食。 推中前中后分 视定朔小余,在半日周已下,用减半日周,余为中前分。在半日周已上,减去半日周,余为中后分。 推时差 置半日击,以中前、中后分减之,余以中后分乘之,所得以九千六百而一为时差。在中前为减,中后为加。 推食甚定分 置定朔小余,以时差加减之,即得。 推距午定分 置中前、中后分,加时差即得。但加不减。 推食甚入盈缩历 置原得盈缩历,加入定朔大余及食甚定分,即得。 推食甚盈缩差 依步气朔求之。 推食甚入盈缩历行定度 置食甚入盈缩历,盈缩差,盈加缩减之,即得。 推南北凡差 视食甚人盈缩历行定度,在周天象限已下为初限,已上与半岁周相减为末限。以初末限自之,如一千八百七十度而一,得数,置四度四十六分减之,余为南北凡差。 推南北定差 置南北凡差,以距午定分乘之,如半昼分而一,以减凡差,余为南北定差。若凡差数少,即反减之。盈初缩末食在正交为减,中交为加。缩初盈末,食在正交为加,中交为减。如系凡差反减而得者,则其加减反是。 推东西凡差 置半岁周,减去食甚入盈缩历行定度,余食甚入盈缩历行定度乘之,以一千八百七十除之为度,即东西凡差。 推东西定差 置东西凡差,以距午定分乘之,如二千五百度而一,视得数在东西凡差以下,即为东西定差。若在凡差已上,倍凡差减之,余为定差。盈历中前,缩历 后者,正交减,中交加。盈历中后,缩中前者,正交加,中交减。 推正交中定限度 视日食在正交者置正交度,在中交者置中交度,以南北东西二定差加减之,即得。 推日食入阴阳历去闪前后度 视交定在正交定限度已下,减去交定度,余为阴历交前度。已上,减去正交定限度,余为阳历交后度。在中交定限度已下,减去交定度,余为阳历闪前度。已上,减去中交定限度,余为阴历后度。若交定在七度已下者加交终度,减去正交定限度,余为阳历交后度。 推日食分秒 在阳历者,置阳食限六度,减去阳历交前、交后度,(不及减者,不食。)阴历同。余以定法六十而一。在阴历者,置阴食限八度,减去阴历交前、交后度,余以定法八十而一,即得。 推定用分 置日食分秒与二十分相减相乘,为开方积。以平方法开之,为开方数。用五千七百四十分(七因八百二十分也。)乘之,如定限行度而一,即得。 推初亏复圆时刻 置食甚定分,以定用分减为初亏,加为复圆。各依发敛加时,即时刻。 推日食起复方位 阳历初亏西南,甚于正南,复于东南。阴历初亏西北,甚于正北,复于东北。若在八分以上,不分阴阳历皆亏正西,复东位。(据午地而论) 推食甚日躔黄道宿次 置食甚入盈缩历行定度,在盈就为定积度,在缩加半岁周为定积度。置定积度,以岁前冬至加时黄道日度加之,满黄道积度钤去之,至不满宿次即食甚日躔。 推日带食 视初亏食甚分,有在日出分已下,为晨刻带食。食甚复圆分,有在日入分已上,为昏刻带食。在晨置日出分,在昏昏置日入分,皆以食甚分与之相减,余为带食差。置带带差,以日食分秒乘之,以定用分而一,所得减日食分秒,余为所见带食分秒。 ▲推月食用数 经望 盈缩历 盈缩差 迟疾历 迟疾差 加减差 定望 入交凡分 定入迟疾历 定限 定限行度 晨分 日出分 昏分 日入分 限数 ▲岁前冬至加时黄道宿次 推交常度 置望下入交凡分,乘月平行,如日食法。 推交定度 置交常度,以望下盈缩差盈加缩减之即得。不及减者,加交终度减之。 推食甚定分 不用时差,即以定望分为食甚分。 推食甚入盈缩历行定度 法同推日食。 推月食入阴阳历 视交定度在交中度已下为阳历,已上减去交中度,余为队历。 推交前交后度 视所得入阴阳历,在后准已下为交后,在前准已上置交中度减之,余为交前。 推月食分秒 置月食限一十三度零五,减去前交后度,(不及减者不食。)馀以定法八十七分而一,即得。 推月食用分 置三十分,与月食分秒相减相乘,为开方积。依平方法开之,为开方数。又以四千九百二十(乃六因八百二十分数。)分乘之,如定限行度而一,即得。 推月食三限(初亏、食甚、复圆。)时刻 置食甚分定分,以用分减为初亏,加为复圆。依发敛得时刻如日食。 推月食五限时刻 月食十分已上者,用五限推之,初亏、食既、食甚、生光、复圆也。置月食分秒,减去十分,余与十分相减相乘,为开方积。平方开之,为开方数。又以四千九百二十分乘之,如定限行度而一为既内分。与定用分相减,余为既外分。置食甚定分,减既内分为既分,又减既外分为初亏分。再置食甚定分,加既内分为生光分,又加既外分为复圆分。各依以敛得时刻。 推更点 置晨分们之,五分之为更法,又五分之为点法。 推月食入更点 各置三限或五限,在昏分已上减去昏分,在晨分已下加入晨分,不满更法为初更,不满点法为一点,以次求之,各得更点之数。 推月食起复方位 阳历初亏东北,甚于正北,复于西北。阴历初亏东南,甚于正南,复于西南。若食在八分已上者,皆初亏正东,复于正西。 推食甚月离黄道宿次 置食甚入盈缩历定度,在盈加半周天,在缩减去七十五秒为定积度。置定积度,加岁前冬至加时黄道日度,以黄道积度钤去之,即得。 推月带食 视初亏、食甚、复圆等分,在日入分以下,为昏刻带食。在日出分已上,为晨刻带食。(推法同日食。) ▲步五星 历度三百六十五度二五七五,半之为历中,又半之为历策。 △木星 合应二百四十三万二三零一。(置中积三亿七千六百一十九万七七五,加辛巳合应一百一十九七二六,得三亿七行七百三十七万九五零一,满木星周率去之,余为《大统》合应。) 历应五百三十八万二五七七二二一五。(置中积,加辛巳历应一千八百九十九万九四八一,得三亿九千五百一十九万娥二五六,满木星历率去之,余为《大统》历应。) 周率三百九十八万八八。 历率四千三百三十一万二九六四八六五。 度率一十一万八五八二。 伏见一十三度。 段目 段日 平度 限度 初行率 合伏 一十六日八六 三度八六 二度九三 二十三分 晨疾初 二十八日 六度二一 四度六四 二十二分 晨疾末 二十八日 五度五一 四度六四 二十二分 晨迟初 二十八日 四度三一 三度二八 一十八分 晨迟末 二十八日 一度九一 一度四五 一十二分 晨留 二十四日 晨退 四十六日五八 四度八八一二五 零度三二八七五 夕退 四十六日五八 四度八八一二五 零度三二八七五 一十六分 夕留 二十四日 夕迟初 二十八日 一度九一 一度四五 夕迟末 二十八日 四度三一 三度二八 一十二分 夕疾初 二十八日 五度五一 四度一九 一十八分 夕疾末 二十八日 六度一一 四度六四 二十一分 夕伏 一十六日八六 三度八六 二度九三 二十二分 △火星 合应二百四十零万一四。(置中积,加辛巳合应五十六万七五四五,得三亿七千六百七十六万七三二,满火星周率去之,为《大统》合应。中积见木星,五星并同。) 历应三百八十四万五七八九三五。(置中积,加辛巳历应五百四十七万二九三八,得三亿八千一百六十七万二七一三,满火星历率去
【摘录】《二十五史查询》